Analysis of the Schizosaccharomyces pombe cyclin puc1: evidence for a role in cell cycle exit.
نویسندگان
چکیده
The puc1+ gene, encoding a G1-type cyclin from the fission yeast Schizosaccharomyces pombe, was originally isolated by complementation in the budding yeast Saccharomyces cerevisiae. Here, we report the molecular characterization of this gene and analyse its role in S. pombe. We fail to identify any function of this cyclin at the mitotic G1/S transition in S. pombe, but demonstrate that it does function in exit from the mitotic cycle. Expression of the puc1+ gene is increased during nitrogen starvation, and puc1 affects the timing of sexual development in response to starvation. Overexpression of the puc1 protein blocks sexual development, and rescues pat1ts cells, which would otherwise undergo a lethal meiosis. We conclude that puc1 contributes to negative regulation of the timing of sexual development in fission yeast, and functions at the transition between cycling and non-cycling cells.
منابع مشابه
Phosphorylation of the RNA-binding protein Zfs1 modulates sexual differentiation in fission yeast
Sexual differentiation in the fission yeast Schizosaccharomyces pombe promotes cell cycle arrest and extensive changes in gene expression, resulting in cell-to-cell fusion, the exchange of hereditary material and specialized cell division. These events are detrimental to the cell if they are triggered in inappropriate conditions, and therefore the decision to differentiate must be precisely con...
متن کاملFlp1, a fission yeast orthologue of the s. cerevisiae CDC14 gene, is not required for cyclin degradation or rum1p stabilisation at the end of mitosis.
In Saccharomyces cerevisiae, the phosphoprotein phosphatase Cdc14p plays a central role in exit from mitosis, by promoting B-type cyclin degradation and allowing accumulation of the cyclin-dependent kinase inhibitor Sic1p. Cdc14p is sequestered in the nucleolus during interphase, from where it is released at the end of mitosis, dependent upon mitotic exit network function. The CDC14 gene is ess...
متن کاملThe Cell Cycle–Regulated Genes of Schizosaccharomyces pombe
Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell ...
متن کاملActivity of Cdc2 and its interaction with the cyclin Cdc13 depend on the molecular chaperone Cdc37 in Schizosaccharomyces pombe.
Cdc37 is a molecular chaperone whose clients are predominantly protein kinases, many of which are important in cell-cycle progression. Temperature-sensitive mutants of cdc37 in Schizosaccharomyces pombe are lethal at the restrictive temperature, arresting cell division within a single cell cycle. These mutant cells elongate during incubation at the restrictive temperature, consistent with a cel...
متن کاملThe kinetics of the B cyclin p56cdc13 and the phosphatase p80cdc25 during the cell cycle of the fission yeast Schizosaccharomyces pombe.
The levels of the B cyclin p56cdc13 and the phosphatase p80cdc25 have been followed in selection-synchronised cultures of Schizosaccharomyces pombe wild-type and wee1 mutant cells. p56cdc13 has also been followed in induction-synchronised cells of the mutant cdc2-33. The main conclusions are: (1) cdc13 levels in wild-type cells start to rise from base line at about mid-G2, reach a peak before m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 107 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1994